內科部研究論文摘要

姓名	李世瑜
論文集編號	7364
論文中文名稱	粒線體穀胱甘肽在細胞氧化還原穩態與疾病表現之作用
600-800 字中文通俗短	粒線體是一種動態的細胞器,其氧化磷酸化(oxidative
文	phosphorylation, OXPHOS)過程產生三磷酸腺苷 (adenosine
	triphosphate, ATP)。粒線體呼吸鏈會消耗氧氣並產生活性氧
	(reactive oxygen species, ROS)。當粒線體出現缺陷或功能
	障礙時,會導致 ATP 產量減少、呼吸受損以及 ROS 累積,進而
	激活有害的細胞途徑,增加癌症、心血管疾病以及肝臟疾病的
	風險。
	粒線體 ROS (mtROS)會在三羧酸循環 (tricarboxylic
	acid cycle)以及電子傳遞鏈 (electrontransferchain)產
	生。當代謝活動增加或抗氧化能力改變時,細胞中的 ROS 會累
	積,從而刺激癌症的發生與進展。在粒線體氧化呼吸鏈中,
	OXPHOS 複合物 III 的泛醌池是產生超氧陰離子的主要位置,這
	裡會發生單一電子向分子氧的轉移。然後,超氧陰離子會經由
	超氧化物歧化酶 (superoxide dismutase)轉化為超氧化物和
	過氧化氫 (H2O2),這些物質會在過渡金屬的參與下產生羥基自
	由基的前驅物。
	穀胱甘肽 (Glutathione, GSH)主要在細胞質中合成並運
	送到粒線體。粒線體穀胱甘肽(mGSH)可以在粒線體內代謝
	H_2O_2 ,這對於維持粒線體功能和氧化呼吸非常重要。除此之外,
	mGSH 也可以作為抗氧化劑、解毒劑和粒線體 DNA 穩定劑等。當
	mGSH 消耗時,會顯著降低基礎粒線體呼吸以及 ATP 的產生。此
	外,mGSH 也可以作為 OXPHOS 蛋白的氧化還原調節劑,並在粒
	線體內膜的 OXPHOS 複合物之間的電子順序轉移中發揮作用。
	mGSH 也參與氧化還原訊號傳導與粒線體基質內鐵硫 (Fe-S)簇

	輔助因子的生物合成。當 mtROS 與 mGSH 的比例長期失衡時,
	會導致細胞功能障礙、細胞凋亡、壞死性凋亡和鐵死亡,進而
	可能誘發疾病。
相關訊息已發表於	Int J Mol Sci 2024; 25(2):1314.